Datadog
Our Datadog integration allows you to import monitors
(also known as alerts), slos
, and services
from your Datadog account into Port, according to your mapping and definition.
Common use cases
- Map monitors, slos and services in your Datadog workspace environment.
- Watch for object changes (create/update/delete) in real-time, and automatically apply the changes to your entities in Port.
- Create/delete Datadog objects using self-service actions.
Prerequisites
To install the integration, you need a Kubernetes cluster that the integration's container chart will be deployed to.
Please make sure that you have kubectl
and helm
installed on your machine, and that your kubectl
CLI is connected to the Kubernetes cluster where you plan to install the integration.
If you are having trouble installing this integration, please refer to these troubleshooting steps.
Installation
Choose one of the following installation methods:
- Real Time & Always On
- Scheduled
Using this installation option means that the integration will be able to update Port in real time using webhooks.
This table summarizes the available parameters for the installation. Set them as you wish in the script below, then copy it and run it in your terminal:
Parameter | Description | Example | Required |
---|---|---|---|
port.clientId | Your port client id | ✅ | |
port.clientSecret | Your port client secret | ✅ | |
port.baseUrl | Your Port API URL - https://api.getport.io for EU, https://api.us.getport.io for US | ✅ | |
integration.secrets.datadogApiKey | Datadog API key, docs can be found here | ✅ | |
integration.secrets.datadogApplicationKey | Datadog application key, docs can be found here | ✅ | |
integration.config.datadogBaseUrl | The base Datadog host. Defaults to https://api.datadoghq.com. If in EU, use https://api.datadoghq.eu | ✅ | |
integration.secrets.datadogWebhookToken | Datadog webhook token. Learn more | ❌ | |
integration.config.appHost | The host of the Port Ocean app. Used to set up the integration endpoint as the target for webhooks created in Datadog | https://my-ocean-integration.com | ❌ |
Advanced configuration
Parameter | Description |
---|---|
integration.eventListener.type | The event listener type. Read more about event listeners |
integration.type | The integration to be installed |
scheduledResyncInterval | The number of minutes between each resync. When not set the integration will resync for each event listener resync event. Read more about scheduledResyncInterval |
initializePortResources | Default true, When set to true the integration will create default blueprints and the port App config Mapping. Read more about initializePortResources |
- Helm
- ArgoCD
To install the integration using Helm, run the following command:
helm repo add --force-update port-labs https://port-labs.github.io/helm-charts
helm upgrade --install my-datadog-integration port-labs/port-ocean \
--set port.clientId="PORT_CLIENT_ID" \
--set port.clientSecret="PORT_CLIENT_SECRET" \
--set port.baseUrl="https://api.getport.io" \
--set initializePortResources=true \
--set scheduledResyncInterval=60 \
--set integration.identifier="my-datadog-integration" \
--set integration.type="datadog" \
--set integration.eventListener.type="POLLING" \
--set integration.config.datadogBaseUrl="https://api.datadoghq.com" \
--set integration.secrets.datadogApiKey="<your-datadog-api-key>" \
--set integration.secrets.datadogApplicationKey="<your-datadog-application-key>"
The baseUrl
, port_region
, port.baseUrl
, portBaseUrl
, port_base_url
and OCEAN__PORT__BASE_URL
parameters are used to select which instance or Port API will be used.
Port exposes two API instances, one for the EU region of Port, and one for the US region of Port.
- If you use the EU region of Port, available at https://app.getport.io, your Port API URL is
https://api.getport.io
- If you use the US region of Port, available at https://app.us.getport.io, your Port API URL is
https://api.us.getport.io
To install the integration using ArgoCD, follow these steps:
- Create a
values.yaml
file inargocd/my-ocean-datadog-integration
in your git repository with the content:
Remember to replace the placeholder for DATADOG_BASE_URL
, DATADOG_API_KEY
and DATADOG_APPLICATION_KEY
.
initializePortResources: true
scheduledResyncInterval: 60
integration:
identifier: my-ocean-datadog-integration
type: datadog
eventListener:
type: POLLING
config:
datadogBaseUrl: DATADOG_BASE_URL
secrets:
datadogApiKey: DATADOG_API_KEY
datadogApplicationKey: DATADOG_APPLICATION_KEY
- Install the
my-ocean-datadog-integration
ArgoCD Application by creating the followingmy-ocean-datadog-integration.yaml
manifest:
Remember to replace the placeholders for YOUR_PORT_CLIENT_ID
YOUR_PORT_CLIENT_SECRET
and YOUR_GIT_REPO_URL
.
Multiple sources ArgoCD documentation can be found here.
ArgoCD Application
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
name: my-ocean-datadog-integration
namespace: argocd
spec:
destination:
namespace: mmy-ocean-datadog-integration
server: https://kubernetes.default.svc
project: default
sources:
- repoURL: 'https://port-labs.github.io/helm-charts/'
chart: port-ocean
targetRevision: 0.1.14
helm:
valueFiles:
- $values/argocd/my-ocean-datadog-integration/values.yaml
parameters:
- name: port.clientId
value: YOUR_PORT_CLIENT_ID
- name: port.clientSecret
value: YOUR_PORT_CLIENT_SECRET
- name: port.baseUrl
value: https://api.getport.io
- repoURL: YOUR_GIT_REPO_URL
targetRevision: main
ref: values
syncPolicy:
automated:
prune: true
selfHeal: true
syncOptions:
- CreateNamespace=true
The baseUrl
, port_region
, port.baseUrl
, portBaseUrl
, port_base_url
and OCEAN__PORT__BASE_URL
parameters are used to select which instance or Port API will be used.
Port exposes two API instances, one for the EU region of Port, and one for the US region of Port.
- If you use the EU region of Port, available at https://app.getport.io, your Port API URL is
https://api.getport.io
- If you use the US region of Port, available at https://app.us.getport.io, your Port API URL is
https://api.us.getport.io
- Apply your application manifest with
kubectl
:
kubectl apply -f my-ocean-datadog-integration.yaml
- GitHub
- Jenkins
- Azure Devops
- GitLab
This workflow will run the Datadog integration once and then exit, this is useful for scheduled ingestion of data.
If you want the integration to update Port in real time using webhooks you should use the Real Time & Always On installation option.
Make sure to configure the following Github Secrets:
Parameter | Description | Example | Required |
---|---|---|---|
port_client_id | Your Port client (How to get the credentials) id | ✅ | |
port_client_secret | Your Port client (How to get the credentials) secret | ✅ | |
port_base_url | Your Port API URL - https://api.getport.io for EU, https://api.us.getport.io for US | ✅ | |
config -> datadog_base_url | US: https://api.datadoghq.com EU: https://api.datadoghq.eu | ✅ | |
config -> datadog_api_key | Datadog API key, docs can be found here | ✅ | |
config -> datadog_application_key | Datadog application key, docs can be found here | ✅ | |
config -> datadog_webhook_token | Datadog webhook token. Learn more | ❌ | |
initialize_port_resources | Default true, When set to true the integration will create default blueprints and the port App config Mapping. Read more about initializePortResources | ❌ | |
identifier | The identifier of the integration that will be installed | ❌ | |
version | The version of the integration that will be installed | latest | ❌ |
The following example uses the Ocean Sail Github Action to run the Datadog integration. For further information about the action, please visit the Ocean Sail Github Action
Here is an example for datadog-integration.yml
workflow file:
name: Datadog Exporter Workflow
# This workflow is responsible for running Datadog exporter.
on:
workflow_dispatch:
jobs:
run-integration:
runs-on: ubuntu-latest
steps:
- uses: port-labs/ocean-sail@v1
with:
type: 'datadog'
port_client_id: ${{ secrets.OCEAN__PORT__CLIENT_ID }}
port_client_secret: ${{ secrets.OCEAN__PORT__CLIENT_SECRET }}
port_base_url: https://api.getport.io
config: |
datadog_base_url: https://api.datadoghq.com
datadog_api_key: ${{ secrets.DATADOG_API_KEY }}
datadog_application_key: ${{ secrets.DATADOG_APP_KEY }}
This pipeline will run the Datadog integration once and then exit, this is useful for scheduled ingestion of data.
Your Jenkins agent should be able to run docker commands.
If you want the integration to update Port in real time using webhooks you should use the Real Time & Always On installation option.
Make sure to configure the following Jenkins Credentials of Secret Text
type:
Parameter | Description | Example | Required |
---|---|---|---|
OCEAN__INTEGRATION__CONFIG__DATADOG_API_KEY | Datadog API key, docs can be found here | ✅ | |
OCEAN__INTEGRATION__CONFIG__DATADOG_APPLICATION_KEY | Datadog application key, docs can be found here | ✅ | |
OCEAN__INTEGRATION__CONFIG__DATADOG_BASE_URL | The base API url | https://api.datadoghq.com / https://api.datadoghq.eu | ✅ |
OCEAN__INTEGRATION__CONFIG__DATADOG_WEBHOOK_TOKEN | Datadog webhook token. Learn more | ❌ | |
OCEAN__PORT__CLIENT_ID | Your Port client (How to get the credentials) id | ✅ | |
OCEAN__PORT__CLIENT_SECRET | Your Port client (How to get the credentials) secret | ✅ | |
OCEAN__PORT__BASE_URL | Your Port API URL - https://api.getport.io for EU, https://api.us.getport.io for US | ✅ | |
OCEAN__INITIALIZE_PORT_RESOURCES | Default true, When set to true the integration will create default blueprints and the port App config Mapping. Read more about initializePortResources | ❌ | |
OCEAN__INTEGRATION__IDENTIFIER | The identifier of the integration that will be installed | ❌ |
Here is an example for Jenkinsfile
groovy pipeline file:
pipeline {
agent any
stages {
stage('Run Datadog Integration') {
steps {
script {
withCredentials([
string(credentialsId: 'OCEAN__INTEGRATION__CONFIG__DATADOG_API_KEY', variable: 'OCEAN__INTEGRATION__CONFIG__DATADOG_API_KEY'),
string(credentialsId: 'OCEAN__INTEGRATION__CONFIG__DATADOG_APPLICATION_KEY', variable: 'OCEAN__INTEGRATION__CONFIG__DATADOG_APPLICATION_KEY'),
string(credentialsId: 'OCEAN__INTEGRATION__CONFIG__DATADOG_BASE_URL', variable: 'OCEAN__INTEGRATION__CONFIG__DATADOG_BASE_URL'),
string(credentialsId: 'OCEAN__PORT__CLIENT_ID', variable: 'OCEAN__PORT__CLIENT_ID'),
string(credentialsId: 'OCEAN__PORT__CLIENT_SECRET', variable: 'OCEAN__PORT__CLIENT_SECRET'),
]) {
sh('''
#Set Docker image and run the container
integration_type="datadog"
version="latest"
image_name="ghcr.io/port-labs/port-ocean-${integration_type}:${version}"
docker run -i --rm --platform=linux/amd64 \
-e OCEAN__EVENT_LISTENER='{"type":"ONCE"}' \
-e OCEAN__INITIALIZE_PORT_RESOURCES=true \
-e OCEAN__INTEGRATION__CONFIG__DATADOG_API_KEY=$OCEAN__INTEGRATION__CONFIG__DATADOG_API_KEY \
-e OCEAN__INTEGRATION__CONFIG__DATADOG_APPLICATION_KEY=$OCEAN__INTEGRATION__CONFIG__DATADOG_APPLICATION_KEY \
-e OCEAN__INTEGRATION__CONFIG__DATADOG_BASE_URL=$OCEAN__INTEGRATION__CONFIG__DATADOG_BASE_URL \
-e OCEAN__PORT__CLIENT_ID=$OCEAN__PORT__CLIENT_ID \
-e OCEAN__PORT__CLIENT_SECRET=$OCEAN__PORT__CLIENT_SECRET \
-e OCEAN__PORT__BASE_URL='https://api.getport.io' \
$image_name
exit $?
''')
}
}
}
}
}
}
This pipeline will run the Datadog integration once and then exit, this is useful for scheduled ingestion of data.
Your Azure Devops agent should be able to run docker commands. Learn more about agents here.
If you want the integration to update Port in real time using webhooks you should use the Real Time & Always On installation option.
Variable groups store values and secrets you'll use in your pipelines across your project. Learn more
Setting Up Your Credentials
- Create a Variable Group: Name it port-ocean-credentials. Store the required variables from the table.
- Authorize Your Pipeline:
- Go to "Library" -> "Variable groups."
- Find port-ocean-credentials and click on it.
- Select "Pipeline Permissions" and add your pipeline to the authorized list.
Parameter | Description | Example | Required |
---|---|---|---|
OCEAN__INTEGRATION__CONFIG__DATADOG_API_KEY | Datadog API key, docs can be found here | ✅ | |
OCEAN__INTEGRATION__CONFIG__DATADOG_APPLICATION_KEY | Datadog application key, docs can be found here | ✅ | |
OCEAN__INTEGRATION__CONFIG__DATADOG_BASE_URL | The base API url | https://api.datadoghq.com / https://api.datadoghq.eu | ✅ |
OCEAN__INTEGRATION__CONFIG__DATADOG_WEBHOOK_TOKEN | Datadog webhook token. Learn more | ❌ | |
OCEAN__PORT__CLIENT_ID | Your Port client (How to get the credentials) id | ✅ | |
OCEAN__PORT__CLIENT_SECRET | Your Port client (How to get the credentials) secret | ✅ | |
OCEAN__PORT__BASE_URL | Your Port API URL - https://api.getport.io for EU, https://api.us.getport.io for US | ✅ | |
OCEAN__INITIALIZE_PORT_RESOURCES | Default true, When set to true the integration will create default blueprints and the port App config Mapping. Read more about initializePortResources | ❌ | |
OCEAN__INTEGRATION__IDENTIFIER | The identifier of the integration that will be installed | ❌ |
Here is an example for datadog-integration.yml
pipeline file:
trigger:
- main
pool:
vmImage: "ubuntu-latest"
variables:
- group: port-ocean-credentials
steps:
- script: |
# Set Docker image and run the container
integration_type="datadog"
version="latest"
image_name="ghcr.io/port-labs/port-ocean-$integration_type:$version"
docker run -i --rm \
-e OCEAN__EVENT_LISTENER='{"type":"ONCE"}' \
-e OCEAN__INITIALIZE_PORT_RESOURCES=true \
-e OCEAN__INTEGRATION__CONFIG__DATADOG_API_KEY=$(OCEAN__INTEGRATION__CONFIG__DATADOG_API_KEY) \
-e OCEAN__INTEGRATION__CONFIG__DATADOG_APPLICATION_KEY=$(OCEAN__INTEGRATION__CONFIG__DATADOG_APPLICATION_KEY) \
-e OCEAN__INTEGRATION__CONFIG__DATADOG_BASE_URL=$(OCEAN__INTEGRATION__CONFIG__DATADOG_BASE_URL) \
-e OCEAN__PORT__CLIENT_ID=$(OCEAN__PORT__CLIENT_ID) \
-e OCEAN__PORT__CLIENT_SECRET=$(OCEAN__PORT__CLIENT_SECRET) \
-e OCEAN__PORT__BASE_URL='https://api.getport.io' \
$image_name
exit $?
displayName: "Ingest Data into Port"
This workflow will run the Datadog integration once and then exit, this is useful for scheduled ingestion of data.
If you want the integration to update Port in real time using webhooks you should use the Real Time & Always On installation option.
Make sure to configure the following GitLab variables:
Parameter | Description | Example | Required |
---|---|---|---|
OCEAN__INTEGRATION__CONFIG__DATADOG_API_KEY | Datadog API key, docs can be found here | ✅ | |
OCEAN__INTEGRATION__CONFIG__DATADOG_APPLICATION_KEY | Datadog application key, docs can be found here | ✅ | |
OCEAN__INTEGRATION__CONFIG__DATADOG_BASE_URL | The base API url | https://api.datadoghq.com / https://api.datadoghq.eu | ✅ |
OCEAN__INTEGRATION__CONFIG__DATADOG_WEBHOOK_TOKEN | Datadog webhook token. Learn more | ❌ | |
OCEAN__PORT__CLIENT_ID | Your Port client (How to get the credentials) id | ✅ | |
OCEAN__PORT__CLIENT_SECRET | Your Port client (How to get the credentials) secret | ✅ | |
OCEAN__PORT__BASE_URL | Your Port API URL - https://api.getport.io for EU, https://api.us.getport.io for US | ✅ | |
OCEAN__INITIALIZE_PORT_RESOURCES | Default true, When set to true the integration will create default blueprints and the port App config Mapping. Read more about initializePortResources | ❌ | |
OCEAN__INTEGRATION__IDENTIFIER | The identifier of the integration that will be installed | ❌ |
Here is an example for .gitlab-ci.yml
pipeline file:
default:
image: docker:24.0.5
services:
- docker:24.0.5-dind
before_script:
- docker info
variables:
INTEGRATION_TYPE: datadog
VERSION: latest
stages:
- ingest
ingest_data:
stage: ingest
variables:
IMAGE_NAME: ghcr.io/port-labs/port-ocean-$INTEGRATION_TYPE:$VERSION
script:
- |
docker run -i --rm --platform=linux/amd64 \
-e OCEAN__EVENT_LISTENER='{"type":"ONCE"}' \
-e OCEAN__INITIALIZE_PORT_RESOURCES=true \
-e OCEAN__INTEGRATION__CONFIG__DATADOG_API_KEY=$OCEAN__INTEGRATION__CONFIG__DATADOG_API_KEY \
-e OCEAN__INTEGRATION__CONFIG__DATADOG_APPLICATION_KEY=$OCEAN__INTEGRATION__CONFIG__DATADOG_APPLICATION_KEY \
-e OCEAN__INTEGRATION__CONFIG__DATADOG_BASE_URL=$OCEAN__INTEGRATION__CONFIG__DATADOG_BASE_URL \
-e OCEAN__PORT__CLIENT_ID=$OCEAN__PORT__CLIENT_ID \
-e OCEAN__PORT__CLIENT_SECRET=$OCEAN__PORT__CLIENT_SECRET \
-e OCEAN__PORT__BASE_URL='https://api.getport.io' \
$IMAGE_NAME
rules: # Run only when changes are made to the main branch
- if: '$CI_COMMIT_BRANCH == "main"'
The baseUrl
, port_region
, port.baseUrl
, portBaseUrl
, port_base_url
and OCEAN__PORT__BASE_URL
parameters are used to select which instance or Port API will be used.
Port exposes two API instances, one for the EU region of Port, and one for the US region of Port.
- If you use the EU region of Port, available at https://app.getport.io, your Port API URL is
https://api.getport.io
- If you use the US region of Port, available at https://app.us.getport.io, your Port API URL is
https://api.us.getport.io
For advanced configuration such as proxies or self-signed certificates, click here.
Ingesting Datadog objects
The Datadog integration uses a YAML configuration to describe the process of loading data into the developer portal.
Here is an example snippet from the config which demonstrates the process for getting service
data from Datadog:
createMissingRelatedEntities: true
deleteDependentEntities: true
resources:
- kind: service
selector:
query: 'true'
port:
entity:
mappings:
blueprint: '"datadogService"'
identifier: .attributes.schema."dd-service"
title: .attributes.schema."dd-service"
properties:
application: .attributes.schema.application
languages: .attributes.schema.languages
description: .attributes.schema.description
tags: .attributes.schema.tags
type: .attributes.schema.type
links: .attributes.schema.links | map(.url)
owners: '[.attributes.schema.contacts[] | select(.type == "email") | .contact]'
The integration makes use of the JQ JSON processor to select, modify, concatenate, transform and perform other operations on existing fields and values from Datadog's API events.
In the example above, two additional parameters are used:
createMissingRelatedEntities
- used to enable the creation of missing related entities in Port. This is useful when you want to create an entity and its related entities in one call, or if you want to create an entity whose related entity does not exist yet.
deleteDependentEntities
- used to enable deletion of dependent Port entities. This is useful when you have two blueprints with a required relation, and the target entity in the relation should be deleted. In this scenario, the delete operation will fail if this parameter is set to false
. If set to true
, the source entity will be deleted as well.
Configuration structure
The integration configuration determines which resources will be queried from Datadog, and which entities and properties will be created in Port.
Kind
)-
The root key of the integration configuration is the
resources
key:resources:
- kind: service
selector:
... -
The
kind
key is a specifier for a Datadog object:resources:
- kind: service
selector:
... -
The
selector
and thequery
keys allow you to filter which objects of the specifiedkind
will be ingested into your software catalog:resources:
- kind: service
selector:
query: "true" # JQ boolean expression. If evaluated to false - this object will be skipped.
port: -
The
port
,entity
and themappings
keys are used to map the Datadog object fields to Port entities. To create multiple mappings of the same kind, you can add another item in theresources
array;resources:
- kind: service
selector:
query: "true"
port:
entity:
mappings: # Mappings between one Datadog object to a Port entity. Each value is a JQ query.
blueprint: '"datadogService"'
identifier: .attributes.schema."dd-service"
title: .attributes.schema."dd-service"
properties:
application: .attributes.schema.application
languages: .attributes.schema.languages
description: .attributes.schema.description
tags: .attributes.schema.tags
type: .attributes.schema.type
links: .attributes.schema.links | map(.url)
owners: '[.attributes.schema.contacts[] | select(.type == "email") | .contact]'
- kind: service # In this instance project is mapped again with a different filter
selector:
query: '.name == "MyServiceName"'
port:
entity:
mappings: ...
Note the value of the blueprint
key - if you want to use a hardcoded string, you need to encapsulate it in 2 sets of quotes, for example use a pair of single-quotes ('
) and then another pair of double-quotes ("
)
Ingest data into Port
To ingest Datadog objects using the integration configuration, you can follow the steps below:
- Go to the DevPortal Builder page.
- Select a blueprint you want to ingest using Datadog.
- Choose the Ingest Data option from the menu.
- Click on
+ Data source
at the top right corner - Select Datadog under the APM & Alerting providers category.
- Modify the configuration according to your needs.
- Click
Resync
.
Examples
Examples of blueprints and the relevant integration configurations:
Monitor
Monitor blueprint
{
"identifier": "datadogMonitor",
"description": "This blueprint represents a datadog monitor",
"title": "Datadog Monitor",
"icon": "Datadog",
"schema": {
"properties": {
"monitorType": {
"type": "string",
"title": "Monitor Type"
},
"tags": {
"type": "array",
"title": "Tags"
},
"overallState": {
"type": "string",
"title": "Overall state",
"enum": ["Alert", "Ignored", "No Data", "OK", "Skipped", "Unknown", "Warn"],
"enumColors": {
"Alert": "red",
"Ignored": "darkGray",
"No Data": "lightGray",
"OK": "green",
"Skipped": "yellow",
"Unknown": "purple",
"Warn": "orange"
}
},
"priority": {
"type": "string",
"title": "Priority"
},
"thresholds": {
"type": "object",
"title": "Thresholds"
},
"createdBy": {
"type": "string",
"title": "Creator"
},
"createdAt": {
"title": "Created At",
"type": "string",
"format": "date-time"
},
"updatedAt": {
"title": "Updated At",
"type": "string",
"format": "date-time"
}
},
"required": []
},
"mirrorProperties": {},
"calculationProperties": {},
"relations": {}
}
Integration configuration
createMissingRelatedEntities: true
deleteDependentEntities: true
resources:
- kind: monitor
selector:
query: 'true'
port:
entity:
mappings:
blueprint: '"datadogMonitor"'
identifier: .id | tostring
title: .name
properties:
tags: .tags
monitorType: .type
overallState: .overall_state
thresholds: .thresholds
priority: .priority
createdBy: .creator.email
createdAt: .created
updatedAt: .modified
Service
Service blueprint
{
"identifier": "datadogService",
"description": "This blueprint represents a Datadog service",
"title": "Datadog Service",
"icon": "Datadog",
"schema": {
"properties": {
"application": {
"title": "Application",
"type": "string"
},
"description": {
"title": "Description",
"type": "string"
},
"tags": {
"type": "array",
"items": {
"type": "string"
},
"title": "Tags"
},
"languages": {
"items": {
"type": "string"
},
"title": "Languages",
"type": "array"
},
"type": {
"title": "Type",
"type": "string",
"enum": [
"web",
"db",
"custom",
"cache",
"function",
"browser",
"mobile"
],
"enumColors": {
"web": "lightGray",
"db": "lightGray",
"custom": "lightGray",
"cache": "lightGray",
"function": "lightGray",
"browser": "lightGray",
"mobile": "lightGray"
}
},
"owners": {
"type": "array",
"title": "Service Owners",
"items": {
"type": "string"
}
},
"links": {
"title": "Service Links",
"type": "array",
"description": "Links to external resources and repositories",
"items": {
"type": "string",
"format": "url"
}
}
},
"required": []
},
"mirrorProperties": {},
"calculationProperties": {},
"aggregationProperties": {},
"relations": {}
}
Integration configuration
createMissingRelatedEntities: true
deleteDependentEntities: true
resources:
- kind: service
selector:
query: 'true'
port:
entity:
mappings:
blueprint: '"datadogService"'
identifier: .attributes.schema."dd-service"
title: .attributes.schema."dd-service"
properties:
application: .attributes.schema.application
languages: .attributes.schema.languages
description: .attributes.schema.description
tags: .attributes.schema.tags
type: .attributes.schema.type
links: .attributes.schema.links | map(.url)
owners: '[.attributes.schema.contacts[] | select(.type == "email") | .contact]'
SLO
SLO blueprint
{
"identifier": "datadogSlo",
"description": "This blueprint represents a datadog SLO",
"title": "Datadog SLO",
"icon": "Datadog",
"schema": {
"properties": {
"tags": {
"type": "array",
"title": "Tags"
},
"sloType": {
"title": "Type",
"type": "string"
},
"description": {
"title": "Description",
"type": "string"
},
"warningThreshold": {
"title": "Warning Threshold",
"type": "string"
},
"targetThreshold": {
"title": "Target Threshold",
"type": "string"
},
"createdAt": {
"title": "Created At",
"type": "string",
"format": "date-time"
},
"updatedAt": {
"title": "Updated At",
"type": "string",
"format": "date-time"
},
"createdBy": {
"title": "Creator",
"type": "string"
}
},
"required": []
},
"mirrorProperties": {},
"calculationProperties": {},
"relations": {
"monitors": {
"target": "datadogMonitor",
"title": "SLO Monitors",
"description": "The monitors tracking this SLO",
"required": false,
"many": true
},
"services": {
"target": "datadogService",
"title": "Services",
"description": "The services tracked by this SLO",
"required": false,
"many": true
}
}
}
Integration configuration
createMissingRelatedEntities: true
deleteDependentEntities: true
resources:
- kind: slo
selector:
query: 'true'
port:
entity:
mappings:
blueprint: '"datadogSlo"'
identifier: .id | tostring
title: .name
properties:
tags: .tags
sloType: .type
description: .description
warningThreshold: .warning_threshold
targetThreshold: .target_threshold
createdBy: .creator.email
createdAt: .created_at | todate
updatedAt: .modified_at | todate
relations:
monitors: .monitor_ids | map(tostring)
services: '.monitor_tags + .tags | map(select(startswith("service:"))) | unique | map(split(":")[1])'
Let's Test It
This section includes a sample response data from Datadog. In addition, it includes the entity created from the resync event based on the Ocean configuration provided in the previous section.
Payload
Here is an example of the payload structure from Datadog:
Monitor response data
{
"id":15173866,
"org_id":1000147697,
"type":"query alert",
"name":"A change @webhook-PORT",
"message":"A change has happened",
"tags":[
"app:webserver"
],
"query":"change(avg(last_5m),last_1h):avg:datadog.agent.running{local} by {version,host} > 40",
"options":{
"thresholds":{
"critical":40.0,
"warning":30.0
},
"notify_audit":false,
"include_tags":true,
"new_group_delay":60,
"notify_no_data":false,
"timeout_h":0,
"silenced":{
}
},
"multi":true,
"created_at":1706707941000,
"created":"2024-01-31T13:32:21.270116+00:00",
"modified":"2024-02-02T16:31:40.516062+00:00",
"deleted":"None"[
"REDACTED"
],
"restricted_roles":"None"[
"REDACTED"
],
"priority":5,
"overall_state_modified":"2024-03-08T20:52:46+00:00",
"overall_state":"No Data",
"creator":{
"name":"John Doe",
"email":"john.doe@gmail.com",
"handle":"john.doe@gmail.com",
"id":1001199545
},
"matching_downtimes":[
]
}
Service response data
{
"type":"service-definition",
"id":"04fbab48-a233-4592-8c53-d1bfe282e6c3",
"attributes":{
"meta":{
"last-modified-time":"2024-05-29T10:31:06.833444245Z",
"github-html-url":"",
"ingestion-source":"api",
"origin":"unknown",
"origin-detail":"",
"warnings":[
{
"keyword-location":"/properties/integrations/properties/opsgenie/properties/service-url/pattern",
"instance-location":"/integrations/opsgenie/service-url",
"message":"does not match pattern '^(https?://)?[a-zA-Z\\\\d_\\\\-.]+\\\\.opsgenie\\\\.com/service/([a-zA-Z\\\\d_\\\\-]+)/?$'"
},
{
"keyword-location":"/properties/integrations/properties/pagerduty/properties/service-url/pattern",
"instance-location":"/integrations/pagerduty/service-url",
"message":"does not match pattern '^(https?://)?[a-zA-Z\\\\d_\\\\-.]+\\\\.pagerduty\\\\.com/service-directory/(P[a-zA-Z\\\\d_\\\\-]+)/?$'"
}
],
"ingested-schema-version":"v2.1"
},
"schema":{
"schema-version":"v2.2",
"dd-service":"inventory-management",
"team":"Inventory Management Team",
"application":"Inventory System",
"tier":"Tier 1",
"description":"Service for managing product inventory and stock levels.",
"lifecycle":"production",
"contacts":[
{
"name":"Inventory Team",
"type":"email",
"contact":"inventory-team@example.com"
},
{
"name":"Warehouse Support",
"type":"email",
"contact":"warehouse-support@example.com"
}
],
"links":[
{
"name":"Repository",
"type":"repo",
"provider":"GitHub",
"url":"https://github.com/example/inventory-service"
},
{
"name":"Runbook",
"type":"runbook",
"provider":"Confluence",
"url":"https://wiki.example.com/runbooks/inventory-service"
}
],
"tags":[
"inventory",
"stock"
],
"integrations":{
"pagerduty":{
"service-url":"https://pagerduty.com/services/inventory"
},
"opsgenie":{
"service-url":"https://opsgenie.com/services/inventory",
"region":"US"
}
},
"extensions":{
"qui_6":{
}
}
}
}
}
SLO response data
{
"id":"b6869ae6189d59baa421feb8b437fe9e",
"name":"Availability SLO for shopping-cart service",
"tags":[
"service:shopping-cart",
"env:none"
],
"monitor_tags":[
],
"thresholds":[
{
"timeframe":"7d",
"target":99.9,
"target_display":"99.9"
}
],
"type":"monitor",
"type_id":0,
"description":"This SLO tracks the availability of the shopping-cart service. Availability is measured as the number of successful requests divided by the number of total requests for the service",
"timeframe":"7d",
"target_threshold":99.9,
"monitor_ids":[
15173866,
15216083,
15254771
],
"creator":{
"name":"John Doe",
"handle":"john.doe@gmail.com",
"email":"john.doe@gmail.com"
},
"created_at":1707215619,
"modified_at":1707215619
}
Mapping Result
The combination of the sample payload and the Ocean configuration generates the following Port entity:
Monitor entity in Port
{
"identifier": "15173866",
"title": "A change @webhook-PORT",
"icon": null,
"blueprint": "datadogMonitor",
"team": [],
"properties": {
"tags": [
"app:webserver"
],
"overallState": "No Data",
"priority": "5",
"createdAt": "2024-01-31T13:32:21.270116+00:00",
"updatedAt": "2024-02-02T16:31:40.516062+00:00",
"createdBy": "john.doe@gmail.com",
"monitorType": "query alert"
},
"relations": {},
"createdAt": "2024-05-29T09:43:34.750Z",
"createdBy": "<port-client-id>",
"updatedAt": "2024-05-29T09:43:34.750Z",
"updatedBy": "<port-client-id>"
}
Service entity in Port
{
"identifier": "inventory-management",
"title": "inventory-management",
"icon": null,
"blueprint": "datadogService",
"team": [],
"properties": {
"owners": [
"inventory-team@example.com",
"warehouse-support@example.com"
],
"links": [
"https://github.com/example/inventory-service",
"https://wiki.example.com/runbooks/inventory-service"
],
"description": "Service for managing product inventory and stock levels.",
"tags": [
"inventory",
"stock"
],
"application": "Inventory System"
},
"relations": {},
"createdAt": "2024-05-29T10:31:44.283Z",
"createdBy": "<port-client-id>",
"updatedAt": "2024-05-29T10:31:44.283Z",
"updatedBy": "<port-client-id>"
}
SLO entity in Port
{
"identifier": "b6869ae6189d59baa421feb8b437fe9e",
"title": "Availability SLO for shopping-cart service",
"icon": null,
"blueprint": "datadogSlo",
"team": [],
"properties": {
"description": "This SLO tracks the availability of the shopping-cart service. Availability is measured as the number of successful requests divided by the number of total requests for the service",
"updatedAt": "2024-02-06T10:33:39Z",
"createdBy": "ahosea15@gmail.com",
"sloType": "monitor",
"targetThreshold": "99.9",
"tags": [
"service:shopping-cart",
"env:none"
],
"createdAt": "2024-02-06T10:33:39Z"
},
"relations": {
"monitors": [
"15173866",
"15216083",
"15254771"
],
"services": [
"shopping-cart"
]
},
"createdAt": "2024-05-29T09:43:51.946Z",
"createdBy": "<port-client-id>",
"updatedAt": "2024-05-29T12:02:01.559Z",
"updatedBy": "<port-client-id>"
}
Alternative installation via webhook
While the Ocean integration described above is the recommended installation method, you may prefer to use a webhook to ingest data from Datadog. If so, follow this guide.